

Cold In-Place Recycling Review 2005

K. Jason Harrington Office of Pavement Technology Jason.Harrington@dot.gov 202.366 -1576 Federal Highway Administration 2005 Cold In-place Recycling State of Practice Review Findings

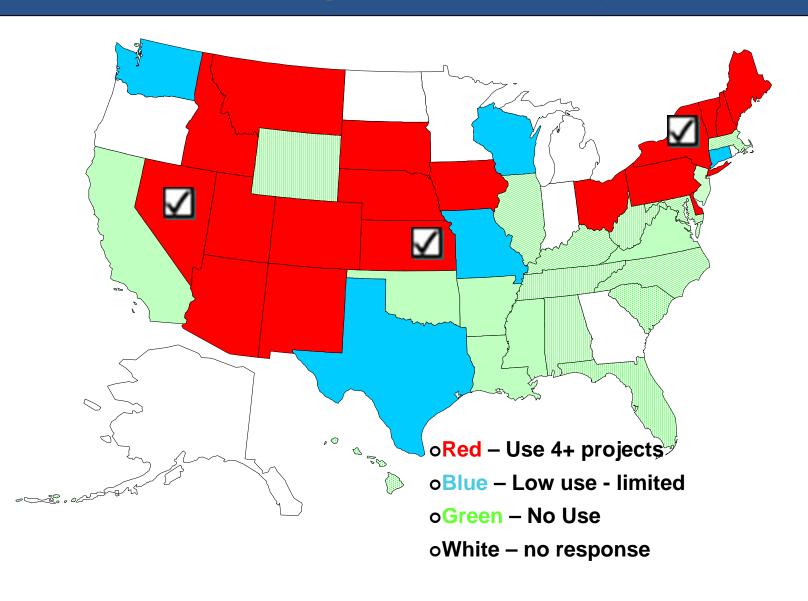
Purposes of Review:

- Gather "Best Practices" presently being implemented by SHA's
- Determine barriers and what states did to overcome barriers
- Identify technical advances in equipment, materials, & specifications
- Identify benefits associated with performance/economics

Members of Review Team

Jason Harrington - Pavement Technology Mike Arasteh - Resource Center – East Walter (Butch) Waidelich – FHWA Utah Division Tom Deddens – Kansas FHWA Division RMRC - Support in \$\$

Results from questionnaire on CIR


41 state DOT 's replied to the initial questionnaire

Output States some use CIR on their roads

20 states reported <u>no</u> use of CIR

Findings from Survey

AASHTO SCOM questionnaire

Of the 21 that said yes -

- 9 states use it frequently or starting to increase their CIR projects
 - 6 states (KS, NV, NM, NY,NE, SD) have a well developed program
 - -3 states (IA, MT, and ME) note increasing use
- 4 states have specs but use it on one or fewer projects a year
- 3 use it on only county/local roads
- 6 states really are not using it

State Experience / Anticipated \$avings

New York DOT

Successfully used for 300 projects during the last 15 years.

Typically average 2 million metric tons per year No info on overall savings, but use is economical

Nevada DOT

Successfully used for 20 years. Began w/ 6 projects between '85 and '92 Successfully treated 770 centerline miles (11%) over the last 9 years Permitted savings of \$600 million during this period Typically realize \$40 million annually

State Experience / Anticipated\$avingsKansas DOT

- K-DOT used CIR successfully since 1977(29 years)
 - 1992 to date. Over 6000 lane miles have been cold in-place recycled
- Why?
 - pavement distress to be fixed were early full depth cracking and low subgrade strength. Poor ride from transverse thermal cracking.
 - Quality aggregate availability issues
 - asphalt stripping problems
- Use of CIR in Kansas has improved the pavement smoothness condition significantly to rank them in the top five in the nation for overall ride smoothness.
- CIR is about 45% less cost then a 4" HMA overlay.

Traffic AADT Restrictions for Use

New York DOT

Nevada DOT

Used on structurally sound roadways having < 8000 AADT & < 10% trucks

Used on structurally sound roadways having < 800 AADT

And wanting technical info on experiences on higher AADT

Kansas DOT

K-DOT we don't have that info

Pavement Design Coefficient

New York DOT

Nevada DOT

•Structural coefficient not used

Kansas DOT

•Structural coefficient value of 0.25-0.28 is assigned to CIR layer.

Structural coefficient used

- Values of 0.25 to 0.28
- Back calculated from FWD testing
- Representative of asphalt treated base
- Soft subgrade requires subgrade stabilization 8" to 12" using FDR including 2% cement

Design Parameters

New York DOT

Minimum existing thickness

- 4-inches total asphalt
 - 3-inches processed
 - 1-inch remains in-place
- Wearing course cover
- 1-1/2-inch overlay
 Expect 10 –15 year life

CIR withstand traffic for a minimum of seven (7) days before an overlay -a performance-like acceptance mechanism Nevada DOT

Minimum existing thickness

- 4-inches total asphalt
 - 3-inches processed
 - 1-1/2-inch remains in-place

•Wearing course cover

- Chip Seal < 300 AADT
- 2" Structural Overlay > 300 AADT
- Expect 15 20 year life w/ lime slurry Expect 10-15 year life w/o lime slurry

Design Parameters

Kansas DOT

- CIR 4" of existing Hot Mix Asphalt (HMA) and overlay it with 1½" to 2" of wearing coarse PG 64-28 to PG 76-28 to address the thermal cracking
- 20- 40 core per project, DCP subgrade test of the cores holes, and gives info to SemMaterials they provide the project mix design, construction field adjustments
- For a CIR (4") using approximately 3% engineered emulsion (PG 58-28), 1.5% Lime.
- Expected to have a service life of 5-10 yrs with little standard maintenance.
- 2% or less moisture content prior to HMA overlay; about 48 hrs.

Performance & Economics

Nevada DOT

CIR 770 centerline miles or 11% of its system since 1997. Typically CIR depth is 7.5cm or 3in

CIR can be used without any HMA:

- -when 20-year ESAL is 100,000 or less.
- With a strong base, can be placed without HMA overlay for up to 20-year ESAL of 300,000 or less.
- Expects a minimum 15 to 20-year life expectancy out of CIR projects
- Life expectancy of CIR typically exceeds the life expectancy of the HMA overlay on top of the CIR

Economics of using CIR

Nevada DOT

The use of CIR & FDR over conventional reconstruction rehabilitation operations has allowed NV DOT to save over \$600M while providing long lasting pavements. Subsequently, NVDOT has improved the pavement condition of its system significantly without spending more money.

Kansas DOT

• K-DOT said money has been saved, amount has not be quantified.

Mix Design Criteria

New York DOT

Perform mix design

- Use 6" roadway cores
- Determine
 - % stone added
- % emulsion content

 3% emulsion typical

 Adjustment to emulsion

 content made in the field
 - Payment to 110% bid quantity permitted

Nevada DOT

Mix design typically not performed. In 2005

- Assume 1.5% lime slurry
- Assume 1.5% CMS-2s emulsion
- Adjustment to emulsion content made in the field (1%-1.5%)

Add Stone NY DOT End Results

Add Stone on top

CIR Equipment

NV DOT

Lime Slurry

CIR Train

Milling

Milling Teeth

Vibratory Roller

Processed Material

Density Specifications

New York DOT

- Density spec not used
- Completed CIR mat subjected to full traffic for 7 days prior to overlay
- Rutting limited to $\leq \frac{1}{2}$ -inch

KDOT relies on test strips to establish density targets.

Nevada DOT

- Use Density specification
 - Establish optimum relative density from 1000' test strip
 - Require target density of 98% optimum density w/ no test < 95% optimum density
 - Density may be increased 2% to 3% by re-rolling 3 to 15 days later
 - Surface placed after 10 to 45 days cure- full traffic

Ride Specification

New York DOT

• No ride specification

• 2005

KDOT ride specification has resulted in an overall better quality workmanship.

Nevada DOT

• Uses ride Specification

- California profiliograph
- Roughness limited to 5" per mile when overlay is used for surface
- Roughness limited to 10" per mile when chip seal is used for surface

Contractor Influence to Process

New York DOT

CIR specialty contractors

- Require large capitol investment
- Require highly trained specialty work force

Contractors:

- Recognize importance of quality workmanship
- Recognize unacceptable cost of failure

Contractor Influence

Nevada

Availability of specialty CIR contractors limited factor (2005)

CIR contractors work multiple states

- Scheduling conflicts
- Specialty sub-contractors and general have to coordinate

Building "boom" in west negatively effects availability of skilled labor force and materials (2005)

Best Practices- Industry Partnerships

New York DOT

Nevada DOT

- Strong partnership with LADA (Liquid Asphalt Distributor's Association)
 - Industry working with county engineers:
 - 30 year history
 - Industry working with state engineers:
 - 20-year history

- Strong partnership with specialty contractors
 - Successfully State history

Partnership between emulsion supplier, CIR construction industry
Annual meetings to review specifications and prior construction year issues has aided in improvements in the overall program.

•20+ years of partnership

Best Practices/ Pre-construction Meetings

New York DOT

Nevada DOT

- Pre-construction meeting
 1-week prior to construction
- Pre-pavement meeting first day of construction
- Mandatory Annual Lessons
 Learned meeting
- Mandatory 2-hour workshop prior to construction

KDOT equipment specification to have:
gradation screed, belt WIM scale, and secondary
crusher to produce in-spec gradation materials
and controls for metering of lime and emulsion.
Pre-construction meetings

Best Practices- Contracting Mechanism New York DOT

Traditional contracting mechanism cumbersome:

- Too slow
- Makes specialty contractor sub to prime
- Utilize Office of General Services (OGS) contracts
 - Annually develop list of "Approved" contractors
 - State requests Contractors annually submit line item quotes on materials and/or activities
- "Quick Quote" requested once specific conditions of project are known
 - "Quick Quote" prices can not exceed original quote

Recycled Materials Resource Center – Another Partner

Center has several research projects reports that are focused on CIR technology.

- Determination of N-design for CIR Mixture Design Using the Super Gyratory Compactor (SGC)
- Laboratory Foamed Asphalt Producing Plant
- Determination of Structural Layer Coefficient for Roadway Recycling Using Foamed Asphalt
- CIR Design Guide for Emulsion using SGC
- www.recycledmaterials.org/

Questions?

